Add like
Add dislike
Add to saved papers

Synthesis, Theoretical and Experimental Investigation of Electronic Properties of New Fluoranthenyl-Based Compounds for OLEDs Applications.

ChemPlusChem 2024 January 12
Three novel conjugated molecules have been synthesized: 2-(fluoranthen-3-yliminomethyl)-3,4-ethylenedioxythio-phene (EIF), 2-(fluoranthen-3-yliminomethyl)thiophene (TIF), and 2-(fluoranthen-3-yliminomethyl)fluorene (FIF). Optical properties were obtained from electronic absorption and emission spectra in DMSO solution. The solvatochromic properties of the molecules have been studied in different solvents. Electrochemical properties were studied by cyclic voltammetry in a Bu4NBF4 (0.1 M)/MeCN organic solution. As part of investigations to explain the nature of electronic transition process, we have performed geometry optimization of both the ground and the vertical excitation states, using the DFT B3LYP/6-311G (d, p) and TD-DFT (CPCM)/B3LYP/6-311G (d, p) approaches, respectively.Theoretical calculations closely match the experimental findings. Results show that EIF, TIF and FIF are potential candidates to be used as electron transport layer in Organic Light-Emitting Diodes (OLEDs).

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app