Add like
Add dislike
Add to saved papers

BAG-Net: a boundary detection and multiple attention-guided network for liver ultrasound image automatic segmentation in ultrasound guided surgery.

OBJECTIVE: Automated segmentation of targets in ultrasound (US) images during US-guided liver surgery holds the potential to assist physicians in fast locating critical areas such as blood vessels and lesions. However, this remains a challenging task primarily due to the image quality issues associated with US, including blurred edges and low contrast. In addition, studies specifically targeting liver segmentation are relatively scarce possibly since studying deep abdominal organs under US is difficult. In this paper, we proposed a network named BAG-Net to address these challenges and achieve accurate segmentation of liver targets with varying morphologies, including lesions and blood vessels.

APPROACH: The BAG-Net was designed with a boundary detection module (BDM) together with a position module (PM) to locate the target, and multiple attention-guided modules (MAGM) combined with the depth supervision strategy to enhance detailed segmentation of the target area.

MAIN RESULTS: Our method was compared to other approaches and demonstrated superior performance on two liver US datasets. Specifically, the method achieved 93.9% precision, 91.2% recall, 92.4% Dice coefficient, and 86.2% IoU to segment the liver tumor. Additionally, we evaluated the capability of our network to segment tumors on the breast US dataset (BUSI), where it also achieved excellent results.

SIGNIFICANCE: Our proposed method was validated to effectively segment liver targets with diverse morphologies, providing suspicious areas for clinicians to identify lesions or other characteristics. In the clinic, the method is anticipated to improve surgical efficiency during US-guided surgery.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app