Add like
Add dislike
Add to saved papers

Schiff Base Complex of Copper Immobilized on Core-Shell Magnetic Nanoparticles Catalyzed One-Pot Syntheses of Polyhydroquinoline Derivatives under Mild Conditions Supported by a DFT Study.

Inorganic Chemistry 2024 January 10
We synthesized a stable and reusable Schiff base complex of copper immobilized on core-shell magnetic nanoparticles [Cu(II)-SB/GPTMS@SiO2 @Fe3 O4 ] with simple, efficient, and available materials. A variety of characterization analyses including Fourier transform infrared (FT-IR), X-ray photoelectron spectroscopy (XPS), field-emission scanning electron microscopy (FE-SEM), transmission electron microscopy (TEM), Brunauer-Emmett-Teller (BET), thermogravimetric analysis (TGA), X-ray diffraction (XRD), vibrating-sample magnetometry (VSM), energy-dispersive X-ray spectrometry (EDX), and inductively coupled plasma (ICP) confirm that our synthesized nanocatalyst was obtained. The particle size distribution from the TEM image was obtained in the range of 42-55 nm. The existence of cupric species (Cu2+ ) in the catalyst was determined with XPS analysis and clearly indicated two peaks at 933.7 and 953.7 eV for Cu 2p3/2 and Cu 2p1/2 , respectively. BET results showed that our catalyst synthesized with a mesoporous structure and with a specific area of 48.82 m2 g-1 . After detailed characterization, the resulting nanocatalyst exhibited excellent catalytic performance for the explored catalytic reactions in the one-pot synthesis of polyhydroquinoline derivatives by the Hantzsch reaction of dimedone, ethyl acetoacetate, ammonium acetate, and various aldehydes under sustainable and mild conditions. The corresponding products 5a - l are achieved in yields of 88-97%. Additionally, density functional theory (DFT) calculations were carried out to investigate the electrostatic potential root (ESP), natural bond orbital (NBO), and molecular orbitals (MOs), drawing the reaction mechanism using the total energy of the reactant and product and the study of structural parameters.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app