Add like
Add dislike
Add to saved papers

Interactions between tDCS treatment and COMT Val158Met in poststroke cognitive impairment.

OBJECTIVE: This study aimed to explore the effect of catechol-O-methyltransferase (COMT) Val158Met and brain-derived neurotrophic factor (BDNF) Val66Met to post-stroke cognitive impairment (PSCI) and the interaction with transcranial direct current stimulation (tDCS).

METHODS: Seventy-six patients with PSCI were randomly assigned to Group (1) (n = 38) to receive anodal tDCS of left dorsolateral prefrontal cortex or Group (2) (n = 38) to receive sham stimulation. The intensity of the tDCS was 2 mA, and the stimulations were applied over the left DLPFC for 10 sessions. The Montreal Cognitive Assessment (MoCA) and backward digit span test (BDST) were assessed before, immediately after, and one month after stimulation.

RESULTS: After stimulation, patients in the tDCS group showed better improvement in both MoCA and BDST than those in the sham group. The results of GLMs also supported the main effects of tDCS on general cognitive function and working memory. Then we found that COMT genotype may have a main effect on the improvement of MoCA and BDST, and there may be an interaction between COMT genotype and tDCS in enhancing BDST. In contrast, BDNF genotype showed no significant main or interaction effects on any scales.

CONCLUSIONS: These findings demonstrate that tDCS can improve cognition after stroke. Gene polymorphisms of COMT can affect the efficacy of tDCS on PSCI, but BDNF may not.

SIGNIFICANCE: This study found that COMT Val158Met has an interaction on the efficacy of prefrontal tDCS in cognitive function, which provides reference for future tDCS research and clinical application.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app