Add like
Add dislike
Add to saved papers

Villin headpiece unfolding upon binding to boridene mediated by the "anchoring-perturbation" mechanism.

IScience 2024 January 20
We employ molecular dynamics (MD) simulations to investigate the influence of boridene on the behavior of a protein model, HP35, with the aim of assessing the potential biotoxicity of boridene. Our MD results reveal that HP35 can undergo unfolding via an "anchoring-perturbation" mechanism upon adsorption onto the boridene surface. Specifically, the third helix of HP35 becomes tightly anchored to the boridene surface through strong electrostatic interactions between the abundant molybdenum atoms on the boridene surface and the oxygen atoms on the HP35 backbone. Meanwhile, the first helix, experiencing continuous perturbation from the surrounding water solution over an extended period, suffers from potential breakage of hydrogen bonds, ultimately resulting in its unfolding. Our findings not only propose, for the first time to our knowledge, the "anchoring-perturbation" mechanism as a guiding principle for protein unfolding but also reveal the potential toxicity of boridene on protein structures.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app