Add like
Add dislike
Add to saved papers

Oxygen-Tolerant Near-Infrared Organic Long-Persistent Luminescent Copolymers.

Angewandte Chemie 2023 December 30
Organic materials exhibiting long-lasting emission in the near infrared are expected to have applications in bio-imaging and other areas. Although room temperature phosphorescence and thermally activated delayed fluorescence display long-lived emission of approximately one minute, organic long-persistent luminescence (OLPL) systems with a similar emission mechanism to inorganic persistent emitters can emit for several hours at room temperature. In particular, OLPL with a hole-diffusion mechanism can function even in the presence of oxygen. However, ionic materials lack long-term stability in neutral organic host owing to aggregation and phase separation. In this study, we synthesised polymers with stable near-infrared persistent luminescence at room temperature via the copolymerization of electron donors and acceptors. The copolymers exhibit long-persistent luminescence (LPL) at temperatures below the glass transition temperature and can be excited by approximately the entire range of visible light. LPL properties and spectra can be controlled by the dopant.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app