Add like
Add dislike
Add to saved papers

Self-supervised tumor segmentation and prognosis prediction in osteosarcoma using multiparametric MRI and clinical characteristics.

BACKGROUND AND OBJECTIVE: Osteosarcoma has a high mortality among malignant bone tumors. MRI-based tumor segmentation and prognosis prediction are helpful to assist doctors in detecting osteosarcoma, evaluating the patient's status, and improving patient survival. Current intelligent diagnostic approaches focus on segmentation with single-parameter MRI, which ignores the nature of MRI resulting in poor performance, and lacks the connection with prognosis prediction. Besides, osteosarcoma is a rare disease, and their few labeled data may lead to model overfitting.

METHODS: We propose a three-stage pipeline for segmentation and prognosis prediction of osteosarcoma to assist doctors in diagnosis. First, we propose the Multiparameter Fusion Contrast Learning (MPFCLR) algorithm to share pre-training weights for the segmentation model using unlabeled data. Then, we construct a multiparametric fusion network (MPFNet), which fuses the complementary features from multiparametric MRI (CE-T1WI, T2WI). It can automatically segment tumor and necrotic regions. Finally, a fusion nomogram is constructed by segmentation masks and clinical characteristics (volume, tumor spread) to predict the patient's prognostic status.

RESULTS: Our experiments used data from 136 patients at the Second Xiangya Hospital in China. According to experiments, the MPFNet achieves 84.19 % mean DSC and 84.56 % mean F1-score in segmenting tumor and necrotic regions, surpassing existing models and single-parameter MRI input for osteosarcoma segmentation. Besides, MPFCLR improves the segmentation performance and convergence speed. In prognosis prediction, our fusion nomogram (C-index: 0.806, 95 %CI: 0.758-0.854) is better than radiomics (C-index: 0.753, 95 %CI: 0.685-0.841) and clinical (C-index: 0.794, 95 %CI: 0.735-0.854) nomograms in predictive performance. Compared to the comparison models, our model is closest to the prediction model based on physician annotations. Moreover, it can accurately distinguish the patients' prognostic status with good or poor.

CONCLUSION: Our proposed solution can provide references for clinicians to detect osteosarcoma, evaluate patient status, and make personalized decisions. It can reduce delayed treatment or overtreatment and improve patient survival.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app