Add like
Add dislike
Add to saved papers

Integrated PbS Colloidal Quantum Dot Photodiodes on Silicon Nitride Waveguides.

ACS Photonics 2023 December 21
Colloidal quantum dots (QDs) have become a versatile optoelectronic material for emitting and detecting light that can overcome the limitations of a range of electronic and photonic technology platforms. Photonic integrated circuits (PICs), for example, face the persistent challenge of combining active materials with passive circuitry ideally suited for guiding light. Here, we demonstrate the integration of photodiodes (PDs) based on PbS QDs on silicon nitride waveguides (WG). Analyzing planar QDPDs first, we argue that the main limitation WG-coupled QDPDs face is detector saturation induced by the high optical power density of the guided light. Using the cladding thickness and waveguide width as design parameters, we mitigate this issue, and we demonstrate WG-QDPDs with an external quantum efficiency of 67.5% at 1275 nm that exhibit a linear photoresponse for input powers up to 400 nW. In the next step, we demonstrate a compact infrared spectrometer by integrating these WG-QDPDs on the output channels of an arrayed waveguide grating demultiplexer. This work provides a path toward a low-cost PD solution for PICs, which are attractive for large-scale production.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app