Add like
Add dislike
Add to saved papers

Predicting disease-related MRI patterns of multiple sclerosis through GAN-based image editing.

INTRODUCTION: Multiple sclerosis (MS) is a complex neurodegenerative disorder that affects the brain and spinal cord. In this study, we applied a deep learning-based approach using the StyleGAN model to explore patterns related to MS and predict disease progression in magnetic resonance images (MRI).

METHODS: We trained the StyleGAN model unsupervised using T1 -weighted GRE MR images and diffusion-based ADC maps of MS patients and healthy controls. We then used the trained model to resample MR images from real input data and modified them by manipulations in the latent space to simulate MS progression. We analyzed the resulting simulation-related patterns mimicking disease progression by comparing the intensity profiles of the original and manipulated images and determined the brain parenchymal fraction (BPF).

RESULTS: Our results show that MS progression can be simulated by manipulating MR images in the latent space, as evidenced by brain volume loss on both T1 -weighted and ADC maps and increasing lesion extent on ADC maps.

CONCLUSION: Overall, this study demonstrates the potential of the StyleGAN model in medical imaging to study image markers and to shed more light on the relationship between brain atrophy and MS progression through corresponding manipulations in the latent space.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app