Add like
Add dislike
Add to saved papers

In Situ Hyperpolarization Enables 15 N and 13 C Benchtop NMR at Natural Isotopic Abundance.

Without employing isotopic labeling, we demonstrate the generation of 15 N and 13 C NMR signals for molecules containing -NH2 motifs using benchtop NMR spectrometers (1-1.4 T). Specifically, high-SNR (>50) detection of ammonia, 4-aminopyridine, benzylamine, and phenethylamine dissolved in methanol or dichloromethane is demonstrated after only 10 s of parahydrogen bubbling using signal amplification by reversible exchange and applying a pulse sequence based on spin-lock-induced crossing. Optimization of the sequence parameters allows us to achieve up to 12% 15 N and 0.4% 13 C polarization in situ without the need for the sample transfer typically employed in other hyperpolarization methods. Moreover, hyperpolarization is generated continuously without having to stop the parahydrogen bubbling to reset magnetization, paving the way toward fast 2D spectroscopic methods and relaxometry. The provided methodology may find application for the identification of diluted chemicals relevant to industry and research with the aid of affordable benchtop NMR spectrometers.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app