Add like
Add dislike
Add to saved papers

Interfacial Water Molecules as Agents for Phase Change Control and Proton Conductivity Enhancement in the Ammonium Vanadyl Tartrate System.

Inorganic Chemistry 2023 December 16
This study demonstrates the reversible structural transformation, single-crystal-to-single-crystal, of the ammonium vanadyl ( L -tartrate) complex salt from the hydrate phase to the anhydrous phase. The transformation can be initiated by stimuli, such as temperature, humidity, or vacuum conditions. The hydrate and anhydrous phases exhibit a tetragonal structure ( P 41 21 2), with marked differences in hydrogen bonding due to the presence or absence of one water molecule per asymmetric unit. The intricate relationship between crystal packing and intermolecular interactions in the hydrate phase was investigated by crystallographic charge density analysis revealing, at the molecular level, the reasons for the observed 5 orders of magnitude higher proton conductivity of the hydrate phase compared to that of the anhydrous phase. To gain further insight into the processes occurring at the surfaces of grain boundaries and the proton transfer mechanisms in this system, rehydration of the complex salt was carried out by using D2 O instead of H2 O and monitored by in situ ATR-FTIR spectroscopy. The results highlight the critical role of interfacial water molecules in driving structural transformations and influencing proton conductivity.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app