Add like
Add dislike
Add to saved papers

A simulation model (PostPLANT-Soil) for predicting pesticide concentrations in succeeding leafy vegetables: I. Validation with experimental data in a Japanese Andosol field.

We developed a simulation model for predicting pesticide concentrations in succeeding leafy vegetables (PostPLANT-Soil), which includes the process of pesticide uptake from plant roots. To validate the model, we compared pesticide concentrations simulated by the model with values measured from field experiments in an upland Andosol. The model validation showed that pesticide concentrations in the plant shoot were correlated with the concentrations in the soil solution rather than those of the water-extracted pesticides. The model successfully simulated the concentration changes in plant shoots when the simulated concentrations of the pesticides in the soil solution were fitted to the measured values by considering the key parameter - the corrective coefficient for the soil adsorption coefficient. However, the simulated shoot concentrations at the appropriate harvest period exceeded the measured values. This indicates that the leafy vegetable used in this study may have some metabolic capacity for the pesticides.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app