Add like
Add dislike
Add to saved papers

Fugacity model incorporating computational fluid dynamics for analyzing the behavior of an insecticide sprayed indoors.

Fugacity models are used widely to predict the time-dependent behaviors of chemicals in environments containing several media ( e.g. , air, sediment, soil, and water). However, these fugacity models work on the assumption that the concentration of a chemical in each medium is uniform, so they cannot describe the spatial distribution of the chemical. We developed a new fugacity model, termed InPestCFD, incorporating computational fluid dynamics to describe both the time-dependent distribution and the spatial distribution of a chemical in a medium. InPestCFD was used to calculate the behavior of an insecticide released from an aerosol canister in a room. Indoor airflow and aerosol particle behavior were calculated via computational fluid dynamics and using a Lagrangian dispersion model. Transport of the insecticide among media (aerosol particles, air, ceiling, floor, and walls) was calculated using the fugacity model. The time-dependent distributions and spatial distributions of the insecticide in the media agreed well with real measurements.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app