Add like
Add dislike
Add to saved papers

Wireless Galvanic Impulse Communication for High-Throughput, Low-Power, Miniaturized Neuromodulation Implants.

Deeply implanted bioelectronic devices that selectively record and stimulate peripheral nerves have the potential to revolutionize healthcare by delivering on-demand, personalized therapy. A key barrier to this goal is the lack of a miniaturized, robust, and energy-efficient wireless link capable of transmitting data from multiple sensing channels. To address this issue, we present a wireless galvanic impulse link that uses two 500μm diameter planar electrodes on the outside of a nerve cuff to transmit data to a wearable receiver on the skin's surface at rates greater than 1Mbps. To achieve an energy-efficient, high data rate link, our protocol encodes information in the timing of narrow biphasic pulses that is reconstructed by the wearable receiver. We use a combination of modeling and in vivo and in vitro experimentation to demonstrate the viability of the link. We demonstrate losses lower than 60dB even with significant, 50mm lateral misalignment, ensuring a sufficient signal-to-noise ratio for robust operation. Using a custom, flexible nerve cuff, we demonstrate data transmission in a 14mm-thick rodent animal model and in a 42mm-thick heterogeneous human tissue phantom.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app