Add like
Add dislike
Add to saved papers

Aerobic exercise performance is reduced following prolonged cold-water immersion.

We tested the hypotheses that self-paced aerobic exercise performance is reduced following four hours of cold-water immersion when breathing air and further reduced when breathing 100% oxygen (O2). Nine healthy adults (four women; age 24 ± 3 years; body fat 17.9 ± 6.4%; VO2max 48±9 mL • kg • minute⁻¹) completed three visits: a no-immersion control trial and two experimental trials consisting of a four-hour cold-water immersion (20.1±0.3°C) either breathing air (FIO2 = 0.21) or O2 (FIO2 = 1.0). During the no-immersion control trial and following immersion in the experimental trials, subjects first completed a 60-minute ruck-march carrying 20% of body mass in a rucksack, immediately followed by an unweighted, self-paced 5-km time trial on a motorized treadmill. Core temperature, heart rate, and rating of perceived exertion were recorded every 1,000 meters during the 5-km time trial. Data are presented mean± SD. Time trial performance was reduced following immersion in both the 100% O2 trial (32±6 minutes; p=0.01) and air trial (32±5 minutes; p=0.01) compared to the control trial (28± 4 minutes). However, there was no difference between the 100% O2 and air trials (p=0.86). Heart rate, core temperature, and rating of perceived exertion increased during the time trial (time effect: p≺0.01), but were not different between trials (trial effect: p≥0.33). These findings suggest that prolonged cold-water immersion attenuates self-paced aerobic exercise performance, but does not appear to be further affected by breathing gas type.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app