Add like
Add dislike
Add to saved papers

Protective Activity of Novel Hydrophilic Synthetic Neurosteroids on Organophosphate Status Epilepticus-induced Chronic Epileptic Seizures, Non-Convulsive Discharges, High-Frequency Oscillations and Electrographic Ictal Biomarkers .

Nerve agents and organophosphates (OP) are neurotoxic chemicals that induce acute seizures, status epilepticus (SE), and mortality. Long-term neurological and neurodegenerative effects manifest months to years after OP exposure. Current benzodiazepine anticonvulsants are ineffective in preventing such long-term neurobehavioral and neuropathological changes. New and effective anticonvulsants are needed for OP intoxication, especially for mitigating the long-term sequelae after acute exposure. We developed neurosteroids as novel anticonvulsants and neuroprotectants in OP exposure models. In this study, we evaluated the long-term efficacy of novel synthetic neurosteroids in preventing the development of chronic epilepsy and hyperexcitable ictal events in a rat OP model of SE. Rats were exposed to the OP nerve agent surrogate diisopropylfluorophosphate (DFP), and the experimental groups were treated with the synthetic neurosteroid valaxanolone (VX) or lysaxanolone (LX) 40 minutes post-exposure in conjunction with midazolam. Video-EEG was monitored for two months to assess spontaneous recurrent seizures (SRS), epileptiform discharges, interictal spikes, and high-frequency oscillations (HFOs). Within 60-days of DFP exposure, rats developed chronic epilepsy characterized by frequent SRS, epileptiform discharges, and HFOs. LX treatment was associated with a dose-dependent reduction of epilepsy occurrence and overall seizure burden with significant decrease in SRS and epileptiform discharges. It significantly reduced the occurrence of epileptic biomarkers of HFOs and interictal spikes, indicating potential disease-modifying activity. Similarly, the neurosteroid analog VX significantly attenuated SRS, discharges, HFOs, and ictal events. These results demonstrate the long-term protective effects of synthetic neurosteroids in the OP-exposed post-SE model, indicating their disease-modifying potential to prevent epilepsy and ictal abnormalities. Significance Statement The effects of nerve agents and OP exposure are persistent, and survivors suffer from a number of devastating, chronic neurological dysfunctions. Currently, there is no specific therapy for preventing this disastrous impact of OP exposure. We propose synthetic neurosteroids that activate tonic inhibition provide viable options for preventing the long-term neurological effects of OP intoxication. The results from this study reveal the disease-modifying potential of two novel synthetic neurosteroids in preventing epileptogenesis and chronic epileptic seizures after OP-induced SE.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app