Add like
Add dislike
Add to saved papers

A fully automated machine learning-based methodology for personalized radiation dose assessment in thoracic and abdomen CT.

Physica Medica : PM 2023 December 4
PURPOSE: To develop a machine learning-based methodology for patient-specific radiation dosimetry in thoracic and abdomen CT.

METHODS: Three hundred and thirty-one thoracoabdominal radiotherapy-planning CT examinations with the respective organ/patient contours were collected retrospectively for the development and validation of segmentation 3D-UNets. Moreover, 97 diagnostic thoracic and 89 diagnostic abdomen CT examinations were collected retrospectively. For each of the diagnostic CT examinations, personalized MC dosimetry was performed. The data derived from MC simulations along with the respective CT data were used for the training and validation of a dose prediction deep neural network (DNN). An algorithm was developed to utilize the trained models and perform patient-specific organ dose estimates for thoracic and abdomen CT examinations. The doses estimated with the DNN were compared with the respective doses derived from MC simulations. A paired t-test was conducted between the DNN and MC results. Furthermore, the time efficiency of the proposed methodology was assessed.

RESULTS: The mean percentage differences (range) between DNN and MC dose estimates for the lungs, liver, spleen, stomach, and kidneys were 7.2 % (0.2-24.1 %), 5.5 % (0.4-23.0 %), 7.9 % (0.6-22.3 %), 6.9 % (0.0-23.0 %) and 6.7 % (0.3-22.6 %) respectively. The differences between DNN and MC dose estimates were not significant (p-value = 0.12). Moreover, the mean processing time of the proposed workflow was 99 % lower than the respective time needed for MC-based dosimetry.

CONCLUSIONS: The proposed methodology can be used for rapid and accurate patient-specific dosimetry in chest and abdomen CT.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app