English Abstract
Journal Article
Add like
Add dislike
Add to saved papers

[Modulation of Expression of Drug Metabolizing Enzymes and Augmentation of Anti-cancer Drug Effects: Through Epigenetics and Three-dimensional Cancer Cell Culture Systems].

Since commencing my role as a professor in a newly established Department of Pharmacodynamics and Molecular Genetics at the School of Pharmacy, Iwate Medical University, on April 1, 2007, my research has focused on modifying gene expression of cytochrome P-450 (CYP) in established human colon cancer cells. Additionally, I have been investigating methods to enhance the anti-tumor effects of irinotecan (CPT-11) and 5-fluorouracil (5-FU) using epigenetic modifying inhibitors of DNA methyltransferase and histone deacetylase. Treating colon cancer cells with a DNA methyltransferase inhibitor, 5-aza-2'-deoxycytidine (DAC), led to elevated expression levels of CYP1B1 and CYP3A4 through demethylation of the promoter regions of related genes. Furthermore, the administration of DAC and the histone deacetylase inhibitor depsipeptide [(DEP), an anti-cancer drug romidepsin] significantly increased the cellular sensitivities of human colon cancer cells to CPT-11 and 5-FU, respectively. Remarkably, DAC treatment also increased colon cancer cell sensitivity to SN-38, an active metabolite of CPT-11, through the suppression of the anti-apoptotic protein Bcl-2. DEP increased colon cancer cell sensitivity to 5-FU in association with increased expressions of tumor-suppressor p21 and major histocompatibility complex class II genes. Another facet of my research is centered around understanding the gene regulatory mechanisms of the CYP1 family through aryl hydrocarbon receptors (AhR)s under glucose-deprivation stress and in three-dimensional (3D) culture systems of human solid tumor cells. In the 3D culture of human liver cancer cells, I found Pregnane X Receptor being implicated in the regulation of CYP1A2, which aligns with the in vivo mode of CYP1A2 expression.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app