Add like
Add dislike
Add to saved papers

Stability of Carbon Supported Silver Electrocatalysts for Alkaline Oxygen Reduction and Evolution Reactions.

Ag-based electrocatalysts are promising candidates to catalyze the sluggish oxygen reduction reaction (ORR) in anion exchange membrane fuel cells (AEMFC) and oxygen evolution reaction (OER) in unitized regenerative fuel cells. However, to be competitive with existing technologies, the AEMFC with Ag electrocatalyst must demonstrate superior performance and long-term durability. The latter implies that the catalyst must be stable, withstanding harsh oxidizing conditions. Moreover, since Ag is typically supported by carbon, the strict stability requirements extend to the whole Ag/C catalyst. In this work, Ag supported on Vulcan carbon (Ag/VC) and mesoporous carbon (Ag/MC) materials is synthesized, and their electrochemical stability is studied using a family of complementary techniques. We first employ an online scanning flow cell combined with inductively coupled plasma mass spectrometry (SFC-ICP-MS) to estimate the kinetic dissolution stability window of Ag. Strong correlations between voltammetric features and the dissolution processes are discovered. Very high silver dissolution during the OER renders this material impractical for regenerative fuel cell applications. To address Ag stability during AEMFC load cycles, accelerated stress tests (ASTs) in O2 -saturated solutions are carried out in rotating disk electrode (RDE) and rotating ring-disk electrode (RRDE) setups. Besides tracking the ORR performance evolution, an ex situ long-term Ag dissolution study is performed. Moreover, morphological changes in the catalyst/support are tracked by identical-location transmission electron microscopy (RDE-IL-TEM). Voltammetry analysis before and after AST reveals a smaller change in ORR activity for Ag/MC, confirming its higher stability. RRDE results reveal a higher increase in the H2 O2 yield for Ag/VC after the ASTs. The RDE-IL-TEM measurements demonstrate different degradation processes that can explain the changes in the long term performance. The results in this work point out that the stability of carbon-supported Ag catalysts depends strongly on the morphology of the Ag nanoparticles, which, in turn, can be tuned depending on the chosen carbon support and synthesis method.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app