Add like
Add dislike
Add to saved papers

Access to Multifunctionalized Tetrasubstituted Carbon Centers Bearing up to Three Different Heteroatoms via Tandem Geminal Chlorofluorination of 1,2-Dicarbonyl Compounds.

Organic Letters 2023 November 31
The incorporation of noncarbon heteroatoms into organic molecules typically instills characteristic and often valuable functionalities. The copresence of different heteroatoms can further broaden their utility through the synergistic cooperative effects, which may even lead to the discovery of formerly unavailable properties that are not just a simple accumulation of each function. However, despite increasing interest in the controllable installation of heteroatoms, it has been extremely challenging to construct carbon centers having three different heteroatoms in a synthetically useful manner. In this work, our group's tandem geminal chlorofluorination (Cl, F) strategy was applied to rationally designed heteroatom-bearing 1,2-dicarbonyl substrates, including α-keto thioesters (S), α-keto N -acylindoles (N), and α-keto acylsilane (Si), which resulted in the practical production of doubly or triply heterofunctionalized tetrasubstituted carbon centers with excellent site-selectivity.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app