Add like
Add dislike
Add to saved papers

Lipidomic Analysis Reveals Differences in the Extent of Remyelination in the Brain and Spinal Cord.

During demyelination, lipid-rich myelin debris is released in the central nervous system (CNS) and must be phagocytosed and processed before new myelin can form. Although myelin comprises over 70% lipids, relatively little is known about how the CNS lipidome changes during demyelination and remyelination. In this study, we obtained a longitudinal lipidomic profile of the brain, spinal cord, and serum using a genetic mouse model of demyelination, known as Plp1 -iCKO- Myrf . The mass spectrometry data is available at the Metabolomics Workbench, where it has been assigned Study ID ST002958. This model has distinct phases of demyelination and remyelination over the course of 24 weeks, in which loss of motor function peaks during demyelination. Using principal component analysis (PCA) and volcano plots, we have demonstrated that the brain and spinal cord have different remyelination capabilities and that this is reflected in different lipidomic profiles over time. We observed that plasmalogens (ether-linked phosphatidylserine and ether-linked phosphatidylcholine) were elevated specifically during the early stages of active demyelination. In addition, we identified lipids in the brain that were altered when mice were treated with a remyelinating drug, which may be CNS biomarkers of remyelination. The results of this study provide new insights into how the lipidome changes in response to demyelination, which will enable future studies to elucidate mechanisms of lipid regulation during demyelination and remyelination.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app