Add like
Add dislike
Add to saved papers

A Peptide-Based Oscillator.

Living organisms are replete with rhythmic and oscillatory behavior at all levels, to the extent that oscillations have been termed as a defining attribute of life. Recent studies of synthetic oscillators that mimic such functions have shown decayed cycles in batch-mode reactions or sustained oscillatory kinetics under flow conditions. Considering the hypothesized functionality of peptides in early chemical evolution and their central role in current bio-nanotechnology, we now reveal a peptide-based oscillator. Oscillatory behavior was achieved by coupling coiled-coil-based replication processes as positive feedback to controlled initiation and inhibition pathways in a continuously stirred tank reactor (CSTR). Our results stress that assembly into the supramolecular structure and specific interactions with the replication substrates are crucial for oscillations. The replication-inhibition processes were first studied in batch mode, which produced a single damped cycle. Thereafter, combined experimental and theoretical characterization of the replication process in a CSTR under different flow and environmental (pH, redox) conditions demonstrated reasonably sustained oscillations. We propose that studies in this direction might pave the way to the design of robust oscillation networks that mimic the autonomous behavior of proteins in cells (e.g., in the cyanobacterial circadian clock) and hence hint at feasible pathways that accelerated the transition from simple peptides to extant enzymes.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app