Add like
Add dislike
Add to saved papers

An integrated model combined intra- and peritumoral regions for predicting chemoradiation response of non small cell lung cancers based on radiomics and deep learning.

PURPOSE: The purpose of this study was to develop a model for predicting chemoradiation response in non-small cell lung cancer (NSCLC) patients by integrating radiomics and deep-learning features and combined intra- and peritumoral regions with pre-treated CT images.

MATERIALS AND METHODS: This study enrolled 462 patients with NSCLC who received chemoradiation. On the basis of pretreated CT images, we developed three models to compare the prediction of chemoradiation: intratumoral, peritumoral and combined regions. To further illustrate each model, we established different feature integration methods: a) radiomics model with 1500 features; b) deep learning model with a multiple instance learning algorithm; c) integrated model by integrating radiomic and deep learning features. For radiomics and integrated models, support vector machine and the least absolute shrinkage and selection operator were used to extract and select features. Transfer learning and max pooling algorithms were used to identify high informative features in deep learning models. We applied ten-fold cross validation in model training and testing.

RESULTS: The best area under the curve (AUC) of intratumoral, peritumoral and combined models were 0.89 (95% CI, 0.74-0.93), 0.86 (95% CI, 0.75-0.92) and 0.92 (95% CI, 0.81-0.95), respectively. It indicated the importance of the peritumoral region for treatment response prediction and should be used in combination with the intratumoral region. Integrated models gave better results than models with radiomics and deep learning features alone in all regions of interest and radiomics models outperformed deep learning models in any comparative models.

CONCLUSIONS: The model that integrate radiomic and deep learning features and combined intra- and peritumoral regions provide valuable information in predicting treatment response of chemoradiation. It can help oncologists customize personalized clinical treatment plans for NSCLC patients.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app