Journal Article
Review
Add like
Add dislike
Add to saved papers

A literature review of the increased intracellular free calcium concentration by biofield therapy or laser exposure. An explanation by using a theoretical study of hydrated calcium ions.

INTRODUCTION: A revision of several experimental results on cells shows that electromagnetic radiation, either produced by biofield therapy (BFT) or laser, induced an increase in intracellular free calcium concentration. An explanation of this phenomenon is proposed.

METHODS: Quantum chemistry calculations were performed on Ca2+ with different degrees of hydration with the DFT/r2 SCAN-3c method together with the implicit solvation model SMD.

RESULTS: Ca2+ dehydration energy by quantum calculations, in an aqueous medium, coincides with the experimental results of the energy of the photon emitted in biofield therapies and lasers. This strongly suggests that the increased intracellular free calcium concentration is because of calcium ion dehydration upon the application of radiation. The Ca2+ dehydration increases the membrane potential due to an augment of the net charge on Ca2+ and it moves near the membrane by the attraction of its negative ions. The voltage-dependent channels are also activated by this membrane potential.

CONCLUSION: The increased intracellular Ca2+ concentration occurs with biofield therapy (BFT) or laser. A novel explanation is given based on resonance-induced Ca2+ dehydration with applied radiation, supported by experimental data and theoretical calculations.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app