Add like
Add dislike
Add to saved papers

Nash equilibrium realization of population games based on social learning processes.

In the two-population game model, we assume the players have certain imitative learning abilities. To simulate the learning process of the game players, we propose a new swarm intelligence algorithm by combining the particle swarm optimization algorithm, where each player can be considered a particle. We conduct simulations for three typical games: the prisoner's dilemma game (with only one pure-strategy Nash equilibrium), the coin-flip game (with only one fully-mixed Nash equilibrium), and the coordination game (with two pure-strategy Nash equilibria and one fully-mixed Nash equilibrium). The results show that when the game has a pure strategy Nash equilibrium, the algorithm converges to that equilibrium. However, if the game does not have a pure strategy Nash equilibrium, it exhibits periodic convergence to the only mixed-strategy Nash equilibrium. Furthermore, the magnitude of the periodical convergence is inversely proportional to the introspection rate. After conducting experiments, our algorithm outperforms the Meta Equilibrium Q-learning algorithm in realizing mixed-strategy Nash equilibrium.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app