Add like
Add dislike
Add to saved papers

Intranasal oxytocin alleviates comorbid depressive symptoms in neuropathic pain via elevating hippocampal BDNF production in both female and male mice.

Neuropharmacology 2023 October 31
The comorbidity of pain and depression is frequently observed in patients suffering from chronic pain and depression. However, the comorbid mechanism is not well elucidated and the therapeutic medication is still inadequate. Oxytocin is a neuropeptide synthesized in the hypothalamus. It has been reported to relieve chronic pain and depressive symptoms. However, the analgesic action and mechanisms of oxytocin have mainly been investigated using peripheral or spinal administration. Because of the advantage of intranasal delivery of oxytocin in crossing the blood-brain barrier, we investigated the effect of intranasal application of oxytocin on neuropathic pain and comorbid depressive symptoms in both female and male mice. In female and male mice receiving spared nerve injury (SNI) surgery, intranasal oxytocin (2.4 μg, daily for 28 days) attenuated depression-like behavior, but did not alleviate mechanical hyperalgesia. Intranasal oxytocin not only inhibited the activation of microglia and astrocytes, but also increased the downregulated oxytocin receptor (OTR) expression, reversed the elevated GluN2A, and restored the decreased BDNF expression in the hippocampus. SNI also decreased OTR expression in the spinal cord and increased spinal GluN2A and BDNF. However, intranasal oxytocin treatment did not change the expression levels of OTR, GluN2A, or BDNF in the spinal cord of neuropathic mice. The results suggest that the oxytocin signaling in the hippocampus is involved in the comorbidity of pain and depression, and intranasal oxytocin may have the potential to treat depressive symptoms in neuropathic pain patients.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app