Add like
Add dislike
Add to saved papers

A novel c.3636-4 A>G mutation in the CCDC88C plays a causative role in familial spinocerebellar ataxia.

Human Heredity 2023 October 28
INTRODUCTION: Spinocerebellar ataxia (SCA) is an autosomal dominant genetic disease characterized by cerebellar neurological deficits. Specifically, its primary clinical manifestation is ataxia accompanied by peripheral nerve damage. A total of 48 causative genes of SCA have been identified. This study aimed to identify causative genes of autosomal dominant SCA in a four-generation Chinese kindred comprised of eight affected individuals.

METHODS: Genomic DNA samples were extracted from the pedigree members, and genomic whole-exome sequencing (WES) was performed, followed by bidirectional Sanger sequencing, and minigene assays to identify mutation sites.

RESULTS: A novel pathogenic heterozygous mutation in the splice region of the coiled-coil domain containing the 88C (CCDC88C) gene (NM_001080414:c.3636-4 A>G) was identified in four affected members. The minigene assay results indicated that this mutation leads to the insertion of CAG bases (c.3636-1_3636-3 insCAG).

CONCLUSION: CCDC88C gene mutation leads to SCA40 (OMIM:616053), which is a rare subtype of SCA without symptoms during childhood. Our findings further demonstrated the role of the CCDC88C gene in SCA and indicated that the c.3636-4 A>G (NM_001080414) variant of CCDC88C is causative for a later-onset phenotype of SCA40. Our findings enrich the mutation spectrum of CCDC88C gene and provide a theoretical basis for the genetic counseling of SCA40.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app