Add like
Add dislike
Add to saved papers

Controlled synthesis of transition metal oxide multi-shell structures and in situ study of the energy storage mechanism.

Nanotechnology 2023 October 28
Multi-shell transition metal oxide hollow spheres show great potential for applications in energy storage because of their unique multilayered hollow structure with large specific surface area, short electron and charge transport paths, and structural stability. In this paper, the controlled synthesis of NiCo2O4, MnCo2O4, NiMn2O4 multi-shell layer structures was achieved by using the solvothermal method. As the anode materials for Li-ion batteries, the three multi-shell structures maintained good stability after 650 long cycles in the cyclic charge/discharge test. The in-situ transmisssion electron microscope characterization combined with cyclic voltammetry tests demonstrated that the three anode materials NiCo2O4, MnCo2O4 and NiMn2O4 have similar charge/discharge transition mechanisms, and the multi-shell structure can effectively buffer the volume expansion and structural collapse during lithium embedding/delithiation to ensure the stability of the electrode structure and cycling performance. The research results can provide effective guidance for the synathesis and charging/discharging mechanism of multi-shell metal oxide lithium-ion battery anode materials.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app