Add like
Add dislike
Add to saved papers

An event-triggered collaborative neurodynamic approach to distributed global optimization.

In this paper, we propose an event-triggered collaborative neurodynamic approach to distributed global optimization in the presence of nonconvexity. We design a projection neural network group consisting of multiple projection neural networks coupled via a communication network. We prove the convergence of the projection neural network group to Karush-Kuhn-Tucker points of a given global optimization problem. To reduce communication bandwidth consumption, we adopt an event-triggered mechanism to liaise with other neural networks in the group with the Zeno behavior being precluded. We employ multiple projection neural network groups for scattered searches and re-initialize their states using a meta-heuristic rule in the collaborative neurodynamic optimization framework. In addition, we apply the collaborative neurodynamic approach for distributed optimal chiller loading in a heating, ventilation, and air conditioning system.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app