Add like
Add dislike
Add to saved papers

Proteome-wide abundance profiling of yeast deletion strains for GET pathway members using sample multiplexing.

Proteomics 2023 October 27
The GET pathway is associated with post-translational delivery of tail-anchored (TA) proteins to the endoplasmic reticulum (ER) in yeast, as well as other eukaryotes. Moreover, dysfunction of the GET pathway has been associated with various pathological conditions (i.e., neurodegenerative disorders, cardiovascular ailments, and protein misfolding diseases). In this study, we used yeast deletion strains of Get complex members (specifically, Get1, Get2, Get3, Get4, and Get5) coupled with sample multiplexing-based quantitative mass spectrometry to profile protein abundance on a proteome-wide scale across the five individual deletion strains. Our dataset consists of over 4500 proteins, which corresponds to >75% of the yeast proteome. The data reveal several dozen proteins that are differentially abundant in one or more deletion strains, some of which are membrane-associated, yet the abundance of many TA proteins remained unchanged. This study provides valuable insights into the roles of these Get genes, and the potential for alternative pathways which help maintain cellular function despite the disruption of the GET pathway.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app