Add like
Add dislike
Add to saved papers

Outcome prediction in comatose cardiac arrest patients with initial shockable and non-shockable rhythms.

BACKGROUND: Prognosis after out-of-hospital cardiac arrest (OHCA) is presumed poorer in patients with non-shockable than shockable rhythms, frequently leading to treatment withdrawal. Multimodal outcome prediction is recommended 72 h post-arrest in still comatose patients, not considering initial rhythms. We investigated accuracy of outcome predictors in all comatose OHCA survivors, with a particular focus on shockable vs. non-shockable rhythms.

METHODS: In this observational NORCAST sub-study, patients still comatose 72 h post-arrest were stratified by shockable vs. non-shockable rhythms for outcome prediction analyzes. Good outcome was defined as cerebral performance category 1-2 within 6 months. False positive rate (FPR) was used for poor and sensitivity for good outcome prediction accuracy.

RESULTS: Overall, 72/128 (56%) patients with shockable and 12/50 (24%) with non-shockable rhythms had good outcome (p < .001). For poor outcome prediction, absent pupillary light reflexes (PLR) and corneal reflexes (clinical predictors) 72 h after sedation withdrawal, PLR 96 h post-arrest, and somatosensory evoked potentials (SSEP), all had FPR <0.1% in both groups. Unreactive EEG and neuron-specific enolase (NSE) >60 μg/L 24-72 h post-arrest had better precision in shockable patients. For good outcome, the clinical predictors, SSEP and CT, had 86%-100% sensitivity in both groups. For NSE, sensitivity varied from 22% to 69% 24-72 h post-arrest. The outcome predictors indicated severe brain injury proportionally more often in patients with non-shockable than with shockable rhythms. For all patients, clinical predictors, CT, and SSEP, predicted poor and good outcome with high accuracy.

CONCLUSION: Outcome prediction accuracy was comparable for shockable and non-shockable rhythms. PLR and corneal reflexes had best precision 72 h after sedation withdrawal and 96 h post-arrest.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app