Add like
Add dislike
Add to saved papers

Physical compatibility of lipid emulsions and intravenous medications used in neonatal intensive care settings.

OBJECTIVE: The purpose of this study was to investigate the physical compatibility of intravenous lipid emulsions with parenteral medications used in neonatal intensive care.

METHODS: Lipid emulsion and drug solutions were combined 1:1 in glass vials, inspected for physical incompatibility at 0, 1 and 2 hours, and assessed on the basis of lipid droplet size at 0 and 2 hours after mixing. Intravenous fluid controls (Water for Injection, sodium chloride 0.9% w/v, glucose 5% w/v), positive controls (gentamicin, albumin), negative controls (metronidazole, paracetamol, vancomycin) and 21 previously untested drug combinations were evaluated.

RESULTS: No phase separation, change in colour, gas production or other visible anomaly was observed. The between-run mean droplet diameter (MDD) for SMOFlipid20% alone (0.301±0.008 µm) was comparable to the lipid emulsion/intravenous fluid and lipid emulsion/drug solution combinations. In addition to gentamicin and albumin, caffeine citrate (20 mg/mL) was shown to be incompatible with the lipid emulsion. All other lipid:drug combinations were compatible, based on the MDD data.

CONCLUSION: Intravenous lipid emulsions were found to be compatible with 20 parenteral medications, including antimicrobial agents, inotropes, anti-inflammatory drugs and caffeine base, in simulated Y-site conditions. The lipid emulsion was incompatible with caffeine citrate injection.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app