Add like
Add dislike
Add to saved papers

Annexin A1 exerts analgesic effect in a mouse model of medication overuse headache.

IScience 2023 November 18
Medication overuse headache (MOH) is a serious global condition. The interaction between headache attacks and medication overuse complicates the understanding of its pathophysiology. In this study, we developed a preclinical MOH model that incorporates these two key factors by overusing rizatriptan benzoate (RIZ, 4 mg/kg, i.g.) in a glyceryl trinitrate (GTN, 10 mg/kg, i.p.) induced chronic migraine mouse model. We observed that RIZ overuse aggravated GTN-induced cutaneous allodynia and caused a prolonged state of latent sensitization. We also detected a significant upregulation of Annexin-A1 (ANXA1), a protein mainly expressed in the microglia of the spinal trigeminal nucleus caudalis (SPVC), in GTN+RIZ mice. Intracerebroventricular injection of ANXA1-derived peptide Ac2-26 trifluoroacetic acid (TFA) (5 μg/mouse) inhibited bright light stress (BLS) induced acute allodynia via the formyl peptide receptor (FPR) in GTN+RIZ mice. These results suggest that ANXA1 may have an analgesic effect in triptan-associated MOH and could potentially serve as a therapeutic target.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app