Add like
Add dislike
Add to saved papers

Segmentation of cardiac infarction in delayed-enhancement MRI using probability map and transformers-based neural networks.

BACKGROUND AND OBJECTIVE: Automatic segmentation of myocardial infarction is of great clinical interest for the quantitative evaluation of myocardial infarction (MI). Late Gadolinium Enhancement cardiac MRI (LGE-MRI) is commonly used in clinical practice to quantify MI, which is crucial for clinical diagnosis and treatment of cardiac diseases. However, the segmentation of infarcted tissue in LGE-MRI is highly challenging due to its high anisotropy and inhomogeneities.

METHODS: The innovative aspect of our work lies in the utilization of a probability map of the healthy myocardium to guide the localization of infarction, as well as the combination of 2D U-Net and U-Net transformers to achieve the final segmentation. Instead of employing a binary segmentation map, we propose using a probability map of the normal myocardium, obtained through a dedicated 2D U-Net. To leverage spatial information, we employ a U-Net transformers network where we incorporate the probability map into the original image as an additional input. Then, To address the limitations of U-Net in segmenting accurately the contours, we introduce an adapted loss function.

RESULTS: Our method has been evaluated on the 2020 MICCAI EMIDEC challenge dataset, yielding competitive results. Specifically, we achieved a Dice score of 92.94% for the myocardium and 92.36% for the infarction. These outcomes highlight the competitiveness of our approach.

CONCLUSION: In the case of the infarction class, our proposed method outperforms state-of-the-art techniques across all metrics evaluated in the challenge, establishing its superior performance in infarction segmentation. This study further reinforces the importance of integrating a contour loss into the segmentation process.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app