Add like
Add dislike
Add to saved papers

LuMA-Functionalized Thermosensitive Hydrogel: A Versatile and Robust Dopamine-Triggered Platform for Diverse Biomolecules Sensing.

It is of great significance for the analysis of multiple biomarkers because a single biomarker is difficult to accurately achieve early diagnosis, disease course monitoring, and prognosis evaluation. Herein, a luminescence thermosensitive hydrogel was synthesized by radical polymerization using a methacrylic acid derivative monomer of luminol (LuMA) as luminescent, N -isopropylacrylamide (NIPAM) as thermosensitive monomer, and acrydite-oligonucleotides [dopamine (DA) aptamer, DNA C1, and DNA C2] as recognition elements. The combined DA based on the affinity interaction between the DA and the aptamer on the hydrogel polymer chain was electrochemically oxidized to dopamine quinone during the electrochemiluminescence (ECL) scanning, which effectively quenched the ECL signal of LuMA due to the resonance energy transfer (RET). In addition, the thermosensitive hydrogel showed swelling-collapse characteristics when the temperature was below and above the volume phase transition temperature. Undergoing the collapse process initiated by the temperature, the RET efficiency was further enhanced due to the shortened distance between the energy donor and acceptor, showing a 1.4 times signal amplification and achieving sensitive detection of DA with a limit of detection (LOD) of 1.7 × 10-10 M. For a proof of concept application, coupled with the target-induced release of DA from the DNA-magnetic beads bioconjugations based on duplex-specific nuclease (DSN)-assisted target recycling amplification strategy and DNAzyme cleavage reaction, this ECL-RET approach was successfully used to evaluate multiple targets including miRNA-141 and MUC1 with the LOD of 2.5 aM and 1.6 fg/mL, respectively. The excellent performances of the versatile and robust ECL-RET hydrogel in multiple target sensing showed potential applications in clinical diagnosis and disease therapeutic assay.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app