Add like
Add dislike
Add to saved papers

Quantitative Photoacoustic Tomography Using Iteratively Refined Wavefield Reconstruction Inversion: A Simulation Study.

The ultimate goal of photoacoustic tomography is to accurately map the absorption coefficient throughout the imaged tissue. Most studies either assume that acoustic properties of biological tissues such as speed of sound (SOS) and acoustic attenuation are homogeneous or fluence is uniform throughout the entire tissue. These assumptions reduce the accuracy of estimations of derived absorption coefficients (DeACs). Our quantitative photoacoustic tomography (qPAT) method estimates DeACs using iteratively refined wavefield reconstruction inversion (IR-WRI) which incorporates the alternating direction method of multipliers to solve the cycle skipping challenge associated with full wave inversion algorithms. Our method compensates for SOS inhomogeneity, fluence decay, and acoustic attenuation. We evaluate the performance of our method on a neonatal head digital phantom.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app