Add like
Add dislike
Add to saved papers

Novel and recurrent COMP gene variants in five Japanese patients with pseudoachondroplasia: skeletal changes from the neonatal to infantile periods.

Pseudoachondroplasia (PSACH) is an autosomal dominant skeletal dysplasia caused by pathogenic variants of cartilage oligomeric matrix protein (COMP). Clinical symptoms of PSACH are characterized by growth disturbances after the first year of life. These disturbances lead to severe short stature with short limbs, brachydactyly, scoliosis, joint laxity, joint pain since childhood, and a normal face. Epimetaphyseal dysplasia, shortened long bones, and short metacarpals and phalanges are common findings on radiological examination. Additionally, anterior tonguing of the vertebral bodies in the lateral view is an important finding in childhood because it is specific to PSACH and normalizes with age. Here, we report five Japanese patients with PSACH, with one recurrent (p.Cys351Tyr) and four novel heterozygous pathogenic COMP variants (p.Asp437Tyr, p.Asp446Gly, p.Asp507Tyr, and p.Asp518Val). These five pathogenic variants were located in the calcium-binding type 3 (T3) repeats. In four of the novel variants, the affected amino acid was aspartic acid, which is abundant in each of the eight T3 repeats. We describe the radiological findings of these five patients. We also retrospectively analyzed the sequential changes in the vertebral body and epimetaphysis of the long bones from the neonatal to infantile periods in a patient with PSACH and congenital heart disease.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app