Add like
Add dislike
Add to saved papers

An implantable, wireless, battery-free system for tactile pressure sensing.

The sense of touch is critical to dexterous use of the hands and thus an essential component of efforts to restore hand function after amputation or paralysis. Prosthetic systems have addressed this goal with wearable tactile sensors. However, such wearable sensors are suboptimal for neuroprosthetic systems designed to reanimate a patient's own paralyzed hand. Here, we developed an implantable tactile sensing system intended for subdermal placement. The system is composed of a microfabricated capacitive pressure sensor, a custom integrated circuit supporting wireless powering and data transmission, and a laser-fused hermetic silica package. The miniature device was validated through simulations, benchtop assessment, and testing in a primate hand. The sensor implanted in the fingertip accurately measured applied skin forces with a resolution of 4.3 mN. The output from this novel sensor could be encoded in the brain with microstimulation to provide tactile feedback. More broadly, the materials, system design, and fabrication approach establish new foundational capabilities for various applications of implantable sensing systems.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app