Add like
Add dislike
Add to saved papers

Exploring Scalable Parallelization for Edit Distance-Based Motif Search.

Motif Searching is an important problem that can reveal crucial information from biological data. Since the general motif searching is NP-hard and the volume of biological data is growing exponentially in recent years, there is a pressing need for developing time and space-efficient algorithms to find motifs. In this paper, we explore scalable parallelization for Edit Distance-Based Motif Search (EMS). We introduce two parallel designs, recursEMS which integrates the existing EMS solver into a parallel recursion tree running in multiple processes, and parEMS that presents a novel thread-based method which avoids the storage of redundant motif candidates. To make the parallel designs practical, we implement SPEMS, a Scalability-sensitive Parallel solver for EMS. For any given biological dataset and search instance, SPEMS can provide an EMS parallelization towards the optimal performance, or a sub-optimal performance but being more space efficient. Evaluations on two real-world DNA dataset TRANSFAC and ChIP-seq show that SPEMS can obtain 10× geometric mean speedup over the state-of-the-art at the expense of no less than 74.7% memory overheads, or provide 2.2× geometric mean speedup with the possibility of consuming less memory, when running on a 48-core machine.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app