Add like
Add dislike
Add to saved papers

Dense NiCo2O4 Nanoneedles Grown on Carbon Foam Showing Excellent Electrochemical and Microwave Absorption Properties.

Electromagnetic pollution could harm sensitive electronic equipment due to the rising use of electronic devices and communication infrastructure. The supercapacitor's electrochemical performance should be enhanced, and electromagnetic damage should be prevented. This study proposes NiCo2O4/CF composites for supercapacitors and microwave absorption. They are made by combining hydrothermal and annealing processes. Dense NiCo2O4 nanoneedles were uniformly grown on the outer layer of carbon foam (CF) as a growth skeleton, preventing the agglomeration of NiCo2O4. The composite had a specific capacitance of 537.5 F/g at 1 A/g. When the current density was set to 1 A/g, the supercapacitor that used NiCo2O4/CF as the cathode had a specific capacitance of 70.7 F/g, and when the current density was increased to 10 A/g, the original specific capacitance of 87.2% could still be maintained after 5000 charge-discharge cycles. At a power density of 3695.5 W/kg, an energy density of 22.1 Wh/kg could be maintained. Furthermore, we performed a microwave absorption test and determined its reflection loss curve for various sample thicknesses. Recombination enhanced the composite material's microwave absorption capability by greatly reducing the dielectric loss and the magnetic loss.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app