Add like
Add dislike
Add to saved papers

Nanocomposites from spent coffee grounds and iron/zinc oxide: green synthesis, characterization, and application in textile wastewater treatment.

This study reports on a novel composite of bimetallic FeO/ZnO nanoparticles supported by spent coffee grounds (SCGs). The leaves of eucalyptus (Eucalyptus globulus Labill) and trumpet (Cuphea aequipetala Cav), with their high antioxidant content, serve as bio-reductant agents for the green synthesis of nanoparticles. It was characterized using Fourier transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM), energy dispersive X-ray spectroscopy (EDS), X-ray diffraction (XRD), and transmission electron microscopy (TEM). Stable nanoparticles were produced with different diameters of 5-30 nm, and they were applied as catalysts in Fenton-like processes. Box-Behnken experimental design (BBD) was used to determine the optimal removal efficiency with three factors and was used in the degradation of textile dyes from wastewater. The nanocomposite displayed a high decolorization ratio (88%) of indigo carmine in the presence of H2 O2 combined. This resulted in a reduction in chemical oxygen demand (COD) of 56% at 120 min of contact time at an initial pH of 3.0 and a 0.5 g/L of catalyst dose, a H2 O2 concentration of 8.8 mM/L, an initial dye concentration of 100 mg/L, and a temperature of 25 °C.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app