Add like
Add dislike
Add to saved papers

Immobilization of BoPAL3 Phenylalanine Ammonia-Lyase on Electrospun Nanofibrous Membranes of Polyvinyl Alcohol/Nylon 6/Chitosan Crosslinked with Dextran Polyaldehyde.

Polymers 2023 September 9
Phenylalanine ammonia-lyase (PAL, EC 4.3.1.24) is common in plants and catalyzes the formation of trans -cinnamic acid and ammonia via phenylalanine deamination. Recombinant Bambusa oldhamii BoPAL3 protein expressed in Escherichia coli was immobilized on an electrospun nanofibrous membrane using dextran polyaldehyde as a crosslinker. The immobilized BoPAL3 protein exhibited comparable kinetic properties with the free BoPAL3 protein and could be recycled for six consecutive cycles compared with the free BoPAL3 protein. The residual activity of the immobilized BoPAL3 protein was 84% after 30 days of storage at 4 °C, whereas the free BoPAL3 protein retained 56% residual activity in the same storage conditions. Furthermore, the resistance of the immobilized BoPAL3 protein to chemical denaturants was greatly increased. Therefore, the BoPAL3 protein can be immobilized using the natural dextran polyaldehyde crosslinker in place of the conventional chemical crosslinker. Nanofibrous membranes made from polyvinyl alcohol (PVA), nylon 6, and chitosan (CS) are incredibly stable and useful for future industrial applications.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app