Add like
Add dislike
Add to saved papers

Stenotic geometry effects on airflow dynamics and respiration for central airway obstruction.

BACKGROUND AND OBJECTIVE: The quantitative relationship between tracheal anatomy and ventilation function can be analyzed by using engineering-derived methods, including mathematical modeling and numerical simulations. In order to provide quantitative functional evaluation for patients with tracheobronchial stenosis, we here propose an aerodynamics-based assessment method by applying computational fluid dynamics analysis on synthetic and patient-specific airway models.

METHODS: By using 3D reconstruction of tracheobronchial tree and computational fluid dynamics simulations, the aerodynamic environment from the stenotic central airway down to the 4th-6th bifurcation of the tracheobronchial tree is examined in both synthetic and patient-derived models. The effects of stenotic anatomy (the degree of stenosis, stenotic length and location) on the aerodynamic parameters, including pressure drop, area-average velocity, volume flow rate, wall shear stress and airflow resistance, are investigated on three-dimensional models of tracheobronchial tree.

RESULTS: The results from 36 synthetic models demonstrate that 70% constriction marks the onset of a precipitous decrease in airflow relative to a normal airway. The analyses of simulation results of 8 patient-specific models indicate that the Myer-Cotton stenosis grading system can be interpreted in terms of aerodynamics-derived description, such as flow resistance. The tracheal stenosis significantly influences the resistance of peripheral bronchi, especially for patients with severe stenosis.

CONCLUSIONS: The present study forms a systematic framework for future development of more robust, bioengineering-informed evaluation methods for quantitative assessment of respiratory function of patients with central airway obstruction.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app