Add like
Add dislike
Add to saved papers

Multiple Routes to Color Convergence in a Radiation of Neotropical Poison Frogs.

Systematic Biology 2023 August 11
Convergent evolution is defined as the independent evolution of similar phenotypes in different lineages. Its existence underscores the importance of external selection pressures in evolutionary history, revealing how functionally similar adaptations can evolve in response to persistent ecological challenges through a diversity of evolutionary routes. However, many examples of convergence, particularly among closely related species, involve parallel changes in the same genes or developmental pathways, raising the possibility that homology at deeper mechanistic levels is an important facilitator of phenotypic convergence. Using the genus Ranitomeya, a young, color-diverse radiation of Neotropical poison frogs, we set out to (1) provide a phylogenetic framework for this group, (2) leverage this framework to determine if color phenotypes are convergent, and (3) to characterize the underlying coloration mechanisms to test whether color convergence occurred through the same or different physical mechanisms. We generated a phylogeny for Ranitomeya using ultraconserved elements and investigated the physical mechanisms underlying bright coloration, focusing on skin pigments. Using phylogenetic comparative methods, we identified several instances of color convergence, involving several gains and losses of carotenoid and pterin pigments. We also found a compelling example of nonparallel convergence, where, in one lineage, red coloration evolved through the red pterin pigment drosopterin, and in another lineage through red ketocarotenoids. Additionally, in another lineage, "reddish" coloration evolved predominantly through structural color mechanisms. Our study demonstrates that, even within a radiation of closely related species, convergent evolution can occur through both parallel and nonparallel mechanisms, challenging the assumption that similar phenotypes among close relatives evolve through the same mechanisms.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app