Add like
Add dislike
Add to saved papers

Direct Observation of Higher Multiexciton Formation and Annihilation in CdSe Quantum Dots.

Most experiments on multiexcitons (MX) in quantum dots focused on the biexciton (XX), which is now well-understood. In contrast, there is little understanding of higher MX in quantum dots as a result of their difficulty to observe. Here, we apply time-resolved photoluminescence (t-PL) spectroscopy with 3 ps time resolution, sufficient to directly resolve previously unobserved spectral dynamics of a higher MX in CdSe quantum dots. These experiments resolve the controversy of the sequence of MX emissions, revealing that the higher channels sequentially populate the lower channels. There is a strong dependence of MX recombination kinetics upon a higher MX state, following a universal volume scaling law for Auger recombination for larger dots. Smaller dots show deviations for higher MX. In addition to triexcitons (3X), these experiments reveal MX up to the tetraexciton (4X). These experiments provide a direct observation of MX formation and annihilation in quantum dots. The impact of this observation is a step toward designing quantum dots to exploit higher MX processes.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app