Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

How far does electrical stimulation activate white matter tracts? A computational modeling study.

OBJECTIVE: The aim of this study was to model how the different parameters of electrical stimulation (intensity, pulse shape, probe geometry) influence the extent of white matter activation.

METHODS: The electrical potentials generated by the stimulating electrodes were determined by solving Laplace equation. The temporal evolution of membrane potentials at each nodes of Ranvier of an axon was then computed by solving the coupled system of differential equations describing membrane dynamics and cable propagation.

RESULTS: Regions of unilateral propagation were observed for monophasic pulses delivered with a bipolar probe aligned along the tract. For biphasic pulses, the largest activation areas and depths were found with a high inter-electrode-distance (IED) bipolar probe, oriented orthogonally to the tract. The smallest activation areas and depths were found for bipolar stimulations with the probe aligned parallel to the tract and low IED. For isotropic white matter regions, the activation area and depth were three times larger than for anisotropic white matter tracts.

CONCLUSIONS: Bipolar probes with biphasic pulses offer the greatest versatility: an orthogonal orientation acts as two monopolars (increased sensitivity when searching for a tract), whereas a parallel orientation corresponds to a single monopolar (increased specificity). Activation is more superficial when stimulating highly anisotropic tracts.

SIGNIFICANCE: This knowledge is essential for interpreting the behavorial effects of stimulation and the recordings of axono-cortical evoked potentials.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app