Add like
Add dislike
Add to saved papers

Structural and Computational Analyses of the Unique Interactions of Opicapone in the Binding Pocket of Catechol O -Methyltransferase: A Crystallographic Study and Fragment Molecular Orbital Analyses.

A third-generation inhibitor of catechol O -methyltransferase (COMT), opicapone ( 1 ), has the 3-nitrocatechol scaffold as do the second-generation inhibitors such as entacapone ( 2 ) and tolcapone ( 3 ), but only 1 can sustainably inhibit COMT activity making it suitable for a once-daily regimen. These improvements should be attributed to the optimized sidechain moiety (oxidopyridyloxadiazolyl group) of 1 substituted at the 5-position of the 3-nitrocatechol ring. We analyzed the role of the sidechain moiety by solving the crystal structures of COMT/ S -adenosylmethionine (SAM)/Mg/ 1 and COMT/ S -adenosylhomocysteine (SAH)/Mg/ 1 complexes. Fragment molecular orbital (FMO) calculations elucidated that the dispersion interaction between the sidechains of Leu 198 and Met 201 on the β6β7-loop and the oxidopyridine ring of 1 were unique and important in both complexes. In contrast, the catechol binding site made a remarkable difference in the sidechain conformation of Lys 144. The ε-amino group of Lys 144 was outside of the catalytic pocket and was replaced by a water molecule in the COMT/SAH/Mg/ 1 complex. No nitrocatechol inhibitor has ever been reported to make a complex with COMT and SAH. Thus, the conformational change of Lys 144 found in the COMT/SAH/Mg/ 1 complex is the first crystallographic evidence that supports the role of Lys 144 as a catalytic base to take out a proton ion from the reaction site to the outside of the enzyme. The fact that 1 generated a complex with SAH and COMT also suggests that 1 could inhibit COMT twofold, as a typical substrate mimic competitive inhibitor and as a product-inhibition enhancer.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app