Add like
Add dislike
Add to saved papers

Stiffness and Atomic-Scale Friction in Superlubricant MoS 2 Bilayers.

Molecular dynamics simulations, performed with chemically accurate ab initio machine-learning force fields, are used to demonstrate that layer stiffness has profound effects on the superlubricant state of two-dimensional van der Waals heterostructures. We engineer bilayers of different rigidity but identical interlayer sliding energy surface and show that a 2-fold increase in the intralayer stiffness reduces the friction by a factor of ∼6. Two sliding regimes as a function of the sliding velocity are found. At a low velocity, the heat generated by the motion is efficiently exchanged between the layers and the friction is independent of the layer order. In contrast, at a high velocity, the friction heat flux cannot be exchanged fast enough and a buildup of significant temperature gradients between the layers is observed. In this situation, the temperature profile depends on whether the slider is softer than the substrate.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app