Add like
Add dislike
Add to saved papers

Network pharmacology and multitarget analysis of Nigella sativa in the management of diabetes and obesity: a computational study.

Obesity and diabetes are commonly associated with one another and represent a significant global health issue, with a recent surge in disease incidence. Nigella sativa , also known as black cumin, is believed to possess several health benefits, including anti-diabetic, anticancer, antioxidant, antimicrobial, and anti-obesity properties. In this study, we aimed to identify the active compounds derived from N. sativa , which can potentially inhibit key protein targets and signaling pathways associated with diabesity treatment. We employed an exhaustive in silico search, which led to the identification of 22 potential compounds. Out of these, only five hits were found to be non-toxic, including Arabic and ascorbic acids, dihydrocodeine, catechin, and kaempferol. Our analysis revealed that these hits were associated with genes such as AKT1, IL6, SRC, and EGFR. Finally, we conducted molecular docking and molecular dynamics simulations, which identified kaempferol as the best binder for AKT1 in comparison to the reference molecule. Overall, our in silico integrated pipeline provides a useful approach to identify non-toxic phytocompounds as promising drug candidates to treat diabetes and obesity.Communicated by Ramaswamy H. Sarma.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app