Add like
Add dislike
Add to saved papers

A white-box model for real-time simulation of acid-base balance in blood plasma.

Maintaining an optimal acid base is important for the patient. The theory underlying acid-base balance can be challenging for clinicians and educators. These considerations justify creating simulations that include realistic changes to the partial pressure of carbon dioxide, pH, and bicarbonate ion concentration in a range of conditions. Our explanatory simulation application requires a model that derives these variables from total carbon dioxide content and runs in real time. The presented model is derived from the Stewart model, which is based on physical and chemical principles, and takes into account the effects of weak acids and strong ions on the acid-base balance. An inventive code procedure allows for efficient computation. The simulation results match target data for a broad range of clinically and educationally relevant disturbances of the acid-base balance. The model code meets the real-time goals of the application and can be applied in other educational simulations. Python model source code is made available.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app